
Optimizing Qiskit
Runtime Primitives for
Noise-Resilient
Quantum Computing

Mariana Bernagozzi
IBM Quantum

Paula Tristán
IBM Quantum

• +number of qubits,
+complexity of workflows

• Not practical to work with
individual qubits

• Need for more abstraction
layers

• Qiskit proposes two
primitives: Sampler and
Estimator

Inputs:
• Circuits (optionally

parametrized)

Outputs:
• Sampling quantum states

Inputs:
• Circuits (optionally

parametrized)
• Observables

Outputs:
• Expectation values

2

Primitives
programming model

Optimizing Qiskit Runtime
Primitives for Noise-Resilient
Quantum Computing

TLSIC 2024

MOTIVATION

Sampler Estimator

QISKIT PRIMITIVES

Qiskit SDK
 vs.
Qiskit Runtime

Optimizing Qiskit Runtime
Primitives for Noise-Resilient
Quantum Computing

Open-source package

Qiskit SDK is an open-source
Python package (package
name: qiskit).

Manage circuits and operators

The Qiskit SDK facilitates
working with quantum
computers at the level of
quantum circuits, operators,
and primitives.

Primitives interface

Qiskit SDK defines the interface
for the primitives. It also
provides reference
implementation, from which
different quantum hardware
providers can derive their own.

Cloud-based service

Qiskit Runtime is a cloud-
based service for executing
quantum computations on IBM
hardware.

Fast classical-quantum
executions

Qiskit Runtime is strategically
located near Quantum
computing units (QPUs)
allowing for low-latency
classical-quantum executions.

Primitives implementation

Qiskit Runtime provides an
efficient implementation of the
primitives, leveraging
techniques such as error
suppression and error
mitigation.

TLSIC 2024 3

Q
IS

KI
T

RU
N

TI
M

E
Q

IS
KI

T
SD

K
H

Q
IS

KI
T

TLSIC 2024 4

• Quantum executions are
susceptible to noise and
errors.

• Very active area of research.

• Leverage low-latency
between classical and
quantum world to implement
these techniques.

• Low quantum
computational overhead

• Aims to minimize the
occurrence of errors in the
first place rather than
detecting and correcting
them after the execution.

• Modifies the input circuits in
a targeted way

• Examples: dynamical
decoupling, twirling, and
gate optimization.

• Introduces additional
quantum computational
overhead

• Allows errors to occur and
then infers better results
from multiple noisy
calculations.

• Classical post-processing is
typically used to combine the
outputs and infer better
results

• Examples: TREX, ZNE, PEC,
PEA.

MOTIVATION

Error suppression Error mitigation

TECHNIQUES
Error suppression
and error mitigation
embedded in Qiskit
Runtime Primitives

Optimizing Qiskit Runtime
Primitives for Noise-Resilient
Quantum Computing

The long journey to
Primitives V2

5

• No encapsulation of
common behavior.

• Too low level for
developing applications.

• No error mitigation.

• Introduction of Sampler and
Estimator.

• Provide an abstraction layer.

• Embedded error mitigation
(non-flexible options).

• Non-scalable transformation
of abstract circuits to ISA
circuits.

• Introduction of Primitives
Unified Blocs (PUBs).

• More configurable error
mitigation options.

• Transformation to ISA
circuits implemented as a
service, outside the
Primitives.

TLSIC 2024

Backend.run Primitives V1 Primitives V2Backend.run Primitives V1 Primitives V2

Primitives V2: Primitive Unified
Blocs (PUBs) and broadcasting
rules

6

List-based interface:

Estimator.run(
 [circuit1, circuit2, circuit3],
 [obs1, obs2, obs3],
 [params1, params2, params3]
)

Estimator V1 Estimator V2

Interface change drastically

PUB-based interface:

Estimator.run(
 (circuit1, [obs1, obs2], [params1],
 (circuit2, [obs3], [params2]),
 (circuit3, [obs1, obs2], [ps1][ps2])
)

A PUB is a single circuit along with auxiliary data required
to execute the circuit relative to the primitive in question.

EstimatorPub

1. Single circuit
2. An ObervablesArray
3. A BindingsArray

SamplerPub

1. A single circuit
2. A BindingsArray

Broadcasting rules in a PUB

TLSIC 2024

Primitives V2: Configurable
error suppression and error
mitigation

Dynamical Decoupling options

Options for dynamical
decoupling, such as the
sequence and scheduling
method to use.

Twirling options

Twirling options, such as
whether to apply twirling to
gates and/or measurements,
and the number of shots to run
for each random sample.

Resilience options

Advanced options for
configuring error mitigation
methods such as ZNE, PEC, or
PEA.

Execution options

Including whether to initialize
qubits and the repetition delay.

7TLSIC 2024

Key Takeaways 1
The computational model
introduced by Qiskit consists of
two primitives: Sampler and
Estimator.

2
Primitive interfaces are defined
in Qiskit SDK and there can be
many implementations. The
ones managed by IBM are
called Qiskit Runtime
Primitives.

3
The Qiskit Runtime Primitives
have evolved over time and will
continue to do so.

4
Embedded error mitigation in
Qiskit Runtime Primitives
benefits from low-latency
between classical world and
QPUs.

5
PUB-based interface is more
adequate for majority of
workflows.

6
Primitives V2 allows for more
customizable error
suppression and error
mitigation.

8TLSIC 2024

Thank you for attending our
presentation!

Have you used Qiskit Runtime
Primitives before? We’d love to hear
your feedback.

Feel welcome to pose your question
now or reach out later.

TLSIC 2024 9

